Morphomechanics  Lab​

Buckling of solids and structures made of traditional hard materials, such as steel, is usually a feature to be avoided in engineering, and has been under investigation for over a century. In contrast, over the past few years, extreme materials and structures such as soft matters, thin films, hyperelastic membranes and slender rods, are often at the heart of modern technologies, and their studies have implications and applications in many areas ranging from biology, electronics manufacturing, aerospace engineering to civil engineering. A basic characteristic of such extreme materials is their ability to experience large displacement, rotation and deformation under multiple fields, which inevitably leads to formation of patterns that are much more varied and complicated than those in traditional materials. Such pattern formation is often the result of multiple bifurcations or loss of stability. Knowledge on how such instabilities arise and evolve is essential to describe, understand, predict, and ultimately to design complex materials and structures in modern industry, for example the fabrication of stretchable electronic devices and micro/nano-scale surface patterning control. This requires advanced theories and computational approaches. Our research aims at investigating mechanics of extreme materials and structures and developing advanced computational methods for advancing fundamental understanding and quantitative prediction of highly nonlinear deformation in this vibrant research field. We are also interested in exploring diverse engineering applications of soft materials and structures.
软物质与柔性结构力学课题组探索软材料和柔性结构大变形失稳,膜基系统表面起皱,多尺度建模计算,超材料力学和薄膜力学等前沿而有趣的问题。提倡理论分析、数值计算与实验相结合,分析软材料与柔性结构大变形力学行为,揭示几何、本构、拓扑微结构等对变形行为影响机制,应用于形貌调控和功能结构器件设计。欢迎专业背景为力学、航空航天、机械、材料、物理等相关专业的同学加入课题组,团队长期招聘博士后、博士和硕士研究生。课题组主页:http://morphomech.com